
© Copyright Ian D. Romanick 2009, 2010

20-April-2010

VGP351 – Week 3

⇨ Agenda:
­ Quiz #1
­ Hidden surface removal / occlusion

­ Backface culling
­ Painters algorithm
­ Z-buffer
­ Frustum culling

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Hidden Surface Removal

⇨ Why?

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Hidden Surface Removal

⇨ Why?
­ Correctness: if object A is behind object B, object A

should not obscure object B
­ Performance: don't spend time drawing things that

cannot be seen
­ Obscured objects
­ Polygons on the “backside” of objects
­ Objects outside the camera's view

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ The faces on the back side of this cube can't be
seen because they face away from the viewer

Image from http://en.wikipedia.org/wiki/File:Cubo_rubik_2.jpg

­ There are two common ways
to determine that polygon
faces away from viewer

http://en.wikipedia.org/wiki/File:Cubo_rubik_2.jpg

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ Compare the direction of the surface normal with
the viewing direction

­ If n⋅v > 0, the surface faces away from the camera

⇨ Several problems with this method:
­ Requires that you have surface normals
­ Must be implemented differently for different types of

viewing projections

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ After projection to 2D, it is possible to determine
if vertices are ordered clockwise or counter-
clockwise

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ After projection to 2D, it is possible to determine
if vertices are ordered clockwise or counter-
clockwise

1

23

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ After projection to 2D, it is possible to determine
if vertices are ordered clockwise or counter-
clockwise

1

2 3

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ After projection to 2D, it is possible to determine
if vertices are ordered clockwise or counter-
clockwise

­ How?

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ After projection to 2D, it is possible to determine
if vertices are ordered clockwise or counter-
clockwise

­ Cross-product of two edges! The sign of the Z-
component of the resulting vector tells you the facing

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Backface Culling

⇨ Backface culling is enabled with:
glEnable(GL_CULL_FACE);

⇨ Frontface orientation is selected with:
glFrontFace(GL_CW);
­ Clockwise ordered polygons are considered front-facing

glFrontFace(GL_CCW);
­ Counter-clockwise ordered polygons are considered front-

facing
­ This is the default setting

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Ordering

⇨ Just drawing objects in arbitrary order gives
incorrect results

Image from http://www.planetperplex.com/en/item253

http://www.planetperplex.com/en/item253

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Ordering

⇨ Just drawing objects in arbitrary order gives
incorrect results

⇨ Several geometric solutions exist
­ Painter's algorithm
­ BSP tree
­ Warnock's algorithm

­ We won't actually talk about this algorithm

­ Ray tracing
­ We'll talk about this later in the term

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Painter's Algorithm

1 http://en.wikipedia.org/wiki/Painter%27s_algorithm

⇨ Algorithm traditionally used before 3D
accelerators:

The name "painter's algorithm" refers to the technique
employed by many painters of painting distant parts of a scene
before parts which are nearer....The [algorithm] sorts all the
polygons in a scene by their depth and then paints them in this
order, furthest to closest.1

⇨ Suffered from many problems:
­ The sorting step is slow
­ How to deal with mutually

overlapping polygons?

http://en.wikipedia.org/wiki/Painter%27s_algorithm

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

BSP Tree

⇨ Binary tree where each node
splits space

­ Each node contains an n-dimensional
split-plane

­ One child is in the positive-space of
the plane and the other is in the
negative-space

­ If a polygon is added to a node crosses the split-
plane, partition the polygon at the plane

⇨ Resulting tree can be traversed in order quickly
­ This is (part of) the method that Quake and Quake II

use for hidden surface removal

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

BSP Tree

⇨ Even though traversal is fast, there are several
drawbacks:

­ Splitting polygons can create lots of extra data
­ Splitting polygons can create cracks due to numeric

round-off
­ Creating good trees is very expensive!

­ Largely useless for scenes with lots of dynamic objects
­ This is why you can't destroy walls in most 3D games. :)

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Ordering

⇨ Geometric solutions to the visibility problem have
largely proven ineffective

­ The usual solution is an image-space solution: the
depth buffer

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Pipeline Data Flow

Varyings

Vertex Shader

Fragment Shader

Per-sample
Operations

Primitive
assembly

& rasterization

Pixels

Vertex
Uniforms

Fragment
Uniforms

Fragment
Textures

Vertex
Textures

Attributes

Each fragment has an
interpolated Z (depth)
value

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Pipeline Data Flow

Varyings

Vertex Shader

Fragment Shader

Per-sample
Operations

Primitive
assembly

& rasterization

Pixels

Vertex
Uniforms

Fragment
Uniforms

Fragment
Textures

Vertex
Textures

Attributes

Fragment depth can be
compared with previously
seen depth values

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer

⇨ Depth buffering isn't perfect
­ Differences in interpolation values can lead to errors...

Image from http://en.wikipedia.org/wiki/File:Z-fighting.png

http://en.wikipedia.org/wiki/File:Z-fighting.png

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer in OpenGL

⇨ Depth test compares the depth value of each
fragment of a polygon with the depth value
stored at each pixel

­ If the test passes, the fragment is drawn
­ If the test fails, the fragment is discarded

⇨ To use a depth buffer, we have to allocate one:
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24);

Common maximum
depth buffer size

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer in OpenGL

⇨ Depth test has an enable:
glEnable(GL_DEPTH_TEST);

⇨ Must also set the comparison mode:
glDepthFunc(GLenum mode);

­ mode is one of GL_LESS, GL_LEQUAL, GL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, GL_NEVER,
GL_ALWAYS

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer in OpenGL

⇨ Clear the depth buffer just like the color buffer:
glClear(GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT);

⇨ Set the clear value:
void glClearDepth(GLclampd depth);

Special type! Means that a
floating-point value from 0.0 to
1.0 is required.

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Perspective Projection

Mp=[
f

aspect
0 0 0

0 f 0 0

0 0 −
farnear
far−near

−
2×far×near
far−near

0 0 −1 0
]

This row remaps Z values
on the range [-near, -far] to
[-1, 1].

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer Acceleration

⇨ Per-pixel depth comparison in complex
environments is very expensive

⇨ Many common optimizations exist:
­ Test depth before the fragment shader

­ Saves cost of running fragment shader on occluded
fragments

­ Called “early Z”
­ Cannot be used if the fragment shader modifies the depth

value

­ Hierarchical depth buffer
­ Depth buffer compression
­ Fast Z clear

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Hierarchical Depth Buffer

⇨ Depth buffer is stored by tiles
­ Store the minimum (or maximum) value of each tile

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Hierarchical Depth Buffer

⇨ Depth buffer is stored by tiles
­ Store the minimum (or maximum) value of each tile

⇨ Compare an entire polygon against the tiles that
it overlaps

­ Allows rejection of entire polygons or large portions of
a polygon very quickly

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Depth Buffer Compression

⇨ Several observations:
­ Most of the depth buffer will contain the clear value
­ Most depth values in a block will be close to the near

value in the hierarchical buffer
­ Most depth values in a block will be close to the other

values in the block

⇨ Individual blocks can be stored more compactly
­ Most methods store one full precision value and lower

precision per-pixel deltas from that value

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Fast Z Clear

⇨ Writing the same value to all locations in the
depth buffer takes a lot of bandwidth

­ Store a single bit per n×n block
­ Set that single bit per block when glClear is called

­ For this to work, clear all the buffers with a single call to
glClear

­ When rendering, if the bit is set, use the clear value
for the whole block

⇨ Why does this work?
­ The block size matches the cache line size
­ Data is written back one cache line at a time, so

writing the cleared block back adds no extra cost

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

View-volume Culling

⇨ Determine that an object is entirely outside the
viewing volume

­ Usually an approximation called a bounding volume is
used to represent the object

­ This early culling allows us to avoid even sending the
object to the graphics library

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Plane Equation

⇨ Arbitrary planes in a space are represented by a
plane equation with the following form:

­ n
p
 is the normal of the plane

­ -d
p
 is the distance from the origin to the plane in the

direction of the normal

n p⋅pdP=0

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Plane Equation

n

-d

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Plane Equation

⇨ If we know three non-colinear points on the
plane, the plane equation is easy to calculate

­ Calculate the normal from the cross-product of two
edge vectors:

­ Calculate d using the dot product:

­ v is any point on the plane

v0=v0−v1

v1=v2−v1

np=
v0×v1

∣v0×v1∣

−d=np⋅v

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Plane Equation

⇨ Using the equation of a plane, we can determine
which “side” of the plane a point is on

­ p is a point to be tested
­ If k = 0, then p is on the plane
­ If k < 0, then p is “inside” the plane

­ Technically, it is in the negative half-space

­ If k > 0, then p is “outside” the plane
­ Technically, it is in the positive half-space

n p⋅pd=k

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

View-volume Culling

⇨ Observation: a view-volume is made from 6
planes

­ If a point is in the positive half-space of any of the 6
planes, it is outside the view volume

⇨ If we have a bounding sphere for each object in
the scene, we can use the point-in-volume test

­ For each object, “grow” the frustum by the radius of
the sphere

­ Test the center of the sphere against the new planes

np⋅c d−r =k

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Further Reading

Ulf Assarsson and Tomas Möller, "Optimized View Frustum Culling
Algorithms for Bounding Boxes," journal of graphics tools, 5(1),
pp 9-22, 2000. http://www.cse.chalmers.se/~uffe/vfc_bbox.pdf

http://www.realtimerendering.com/intersections.html

http://www.cse.chalmers.se/~uffe/vfc_bbox.pdf
http://www.realtimerendering.com/intersections.html

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Next week...

⇨ Lighting!
­ Lighting models
­ Shading methods
­ Types of lights

⇨ Assignments:
­ Start assignment #2, part 1

© Copyright Ian D. Romanick 2009, 2010

20-April-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Quake and Quake II are trademarks of id Software.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

